
Python Package
Management Guide
for Enterprise
Developers

Executive Summary

Package management continues to evolve, but traditional Python package managers are slow to catch up.
Enterprise developers must deal with the consequences, including:

Poor Environment Reproducibility - slightly different configurations across environments result in
“works on my machine” issues and time wasted reproducing bugs, delaying time to market.

Supply Chain Security - installing unsigned binaries with package managers is convenient, but
risky. On the other hand, building packages from source for multiple operating systems is painful,
especially if they require linked C libraries.

Choosing the Right Packages/ Versions - how can you be sure you are always choosing the
correct, approved open source components and versions required by your organization?

Fixing Vulnerabilities - investigating vulnerabilities, patching/updating components and rebuilding
environments are time and resource intensive, leaving less time for coding.

The ActiveState Platform addresses these issues, helping Python development teams in enterprises to:

Page 2

Create consistent, reproducible Python environments that can be deployed on a given system with
a single command.

Automatically build Python environments (including C libraries) from source code, resolving
dependencies and packaging the result for all popular operating systems.

Always know which components/versions are approved for use.

Identify vulnerable components, fix them, and automatically rebuild secure environments quickly
and easily.

If you wrestle with any of these issues, adopting the ActiveState Platform will allow you to spend more
time coding and less time managing packages and environments. All of which means you’re more likely to
complete your sprint deliverables on time.

Page 3

The State of Python Package Management
As a Python programmer, you know that package management has been a work in progress for decades.
Defined narrowly, package management is the ability to install, configure, upgrade and uninstall a package
and its dependencies. In practice however, package management is more broadly concerned with
managing the development environment created by installing multiple packages against a specific version
of a programming language on a specific version of an Operating System (OS).

Modern package management is concerned with solving the dependency and environment management
issues that arise from this combination of components, languages and OS’s that original package
managers were never designed to deal with, including:

Multiple Environments - how can I work with multiple projects on my local system if each requires
a different version of the language and/or different versions of packages?

Dependency Conflicts - if one package requires version X of dependency Z, but another package
requires version Y, how can the conflict be resolved?

Reproducibility - how can I ensure that my project can be consistently deployed and run on other
systems?

Package Management Solutions

While pip has long been the standard for installing and managing Python packages, it doesn’t address key
issues around environment and dependency management, such as creating and managing virtual
environments or dependency resolution. Numerous solutions have been introduced to try and bridge the
gap, including:

venv - built into the Python standard library since v3.3, venv provides support for creating and
managing virtual environments. You’ll still need to use pip to install and manage packages, though.

virtualenv - a more full-featured version of venv that ships as a third party package rather than in
the Python core, but you’ll need pip to manage the packages in your virtual environment.

pyenv - adds the capability to manage installed versions of Python, alongside pyenv-virtualenv to
create the actual virtual environments. Still need pip though.

pipenv - effectively combines pip+venv into a single tool that lets you create virtual environments
with whatever Python version you want, and then install and manage packages therein. It even
builds a dependency graph for your project, flagging any issues and generating a Pipfile.lock that
specifies every dependency and version in the project. You’ll need to manually denote
sub-dependencies, however, to ensure deterministic builds across platforms.

poetry - combines environment control with dependency resolution, letting you manage your
project, virtual environment and packages with a single tool. It also flags any dependency conflicts
that arise. Unfortunately, it’s still quite slow at resolving dependencies.

Page 4

There are other package managers available, as well, such as conda for Anaconda Python, or apt and yum
for Linux distributions. All of these alternative ecosystem package management tools have their pros and
cons, but all are capable of managing packages and environments, as well as resolving dependencies.
However, neither apt nor yum natively supports virtual environments, so you’ll have to rely on one of the
solutions listed above. And like poetry, conda’s dependency resolution can be very slow.

Given the plethora of package management choices, seasoned Python developers often gravitate to their
favourite sets of tools to help manage their environments and dependencies. However, when it comes to
issues like dependency conflicts, fixing vulnerabilities, or troubleshooting “works on my machine” issues,
today’s package managers leave developers to manually implement their own workarounds.

Dependency Resolution & Conflicts

While some package management solutions will resolve dependencies, and even flag conflicts, most are
incapable of resolving a dependency conflict. This results in developers manually testing various versions
of packages to see if they can resolve the conflict themselves. In some cases, the solution is fairly
straightforward, but in other cases developers waste time and resources in dependency hell.

The ActiveState Platform includes a dependency solver that not only resolves dependencies but also flags
conflicts at multiple levels, including:

Developers have worked around the shortcomings of Python package management tools for decades.
They’ve also found creative ways to better create and manage each of their development and CI/CD
environments, as well. However, as organizations have adopted agile software development processes,
the pressure to deliver code faster has increased, making creative workarounds for common package and
environment management shortcomings less and less viable.

ActiveState is no stranger to this pressure. We handcrafted our ActivePython distribution, which contains
the latest version of Python and hundreds of popular packages, for decades. But depending on how
drastically each version of Python, key packages, compilers, and patches changed between releases, the
process could take weeks to months. To speed things up, we built the ActiveState Platform, which
automates everything from dependency resolution to compiling linked C libraries to packaging the
environment for Windows, Linux and macOS. The process now takes days, most of which is manual
verification.

We’ve made the ActiveState Platform free for use so that Pythonistas can use it in combination with the
ActiveState Platform’s command line interface (CLI), the State Tool, to manage packages, environments
and dependencies in a standard, reproducible way across Windows, Linux and macOS.

This section discusses a mix of traditional and evolving use cases that are either not addressed, or else
poorly addressed by traditional package management solutions. The ActiveState Platform has been
specifically designed to address these gaps.

Why Modern Python Package Management is Needed

Page 5

Most package managers only resolve dependencies at the language level (ie., package dependencies),
which can lead to problems when your project is deployed on a different operating system, for example.

The ActiveState Platform is also unique in suggesting ways to solve a dependency conflict if it is unable to
resolve the issue automatically. For example:

Top level package dependencies

Linked C/Fortran library dependencies

Transitive dependencies (ie,. dependencies of dependencies)

OS-level dependencies

Shared libraries across multiple languages (ie., openSSL)

Simply following the instructions and changing the version of scipy to be >=0.19.1 (ie., by clicking on the
dropdown and selecting a more recent version) would solve this conflict, eliminating dependency hell.

Page 6

Supply Chain Security

Most developers prefer to install Python packages as binaries offered by the community, even though they
haven’t been signed. If you’re careful to avoid typo-squatted packages, the risk of being compromised is
typically acceptable in most organizations. After all, the alternative would be building every package and
dependency from source for every operating system required, which can be a huge time sink over the life
of a project. But what if there was a way to automate builds from source code?

Most pure Python packages are trivially easy to build from source. The problem arises when a package
has a dependency on a linked C library. In this case, you’ll need to source, create and maintain a build
environment for your operating system, featuring:

C compiler

Fortran compiler (for certain data science packages)

Build scripts

Installer/packager

Download Ingredients - data files containing the all the metadata (version, requirements,
build/install commands, etc) for each component to be built

Correct all metadata errors for each component to be built

Patch any known vulnerabilities

Resolve all conflicts between components and their dependencies, as well as any OS-level
dependencies

But you may also have to manually:

Finally, you can now compile and resolve the inevitable issues.

By contrast, the ActiveState Platform provides a cloud-based build farm that will automatically build
Python packages (as well as their dependencies) from source code in parallel, including any linked C
libraries, ready to install on Windows and Linux. As a result, there’s no need to maintain a local build
environment, or even a need for language or operating system expertise. While not every package can be
automatically built at any point in time (ie., newer versions may introduce a new build method), the
ActiveState Platform often provides the simplest way for developers to build their environment from
source.

Page 7

Environment Reproducibility

Ensuring that your project can be deployed in a consistent, reproducible manner is a key goal for any
software development team.

Python’s requirements.txt and pipfile.lock files specify the exact versions of dependencies in your project.
These files go a long way to ensuring consistent deployability, given a specific version of the programming
language.

Of course, you need to remember to update these files before deploying, but there are other issues, as
well:

All of these issues are likely to lead to environment inconsistencies. The result can be bugs found in the
CI/CD process that developers need to spend time reproducing by rebuilding the CI/CD environment
where the bug was found.

The ActiveState Platform takes a different approach to ensuring environment consistency and
reproducibility by:

Requirements.txt and pipfile.lock files can get out of sync as different developers on a team update
their development environment for their own purposes.

Even when all development team members are using identical Docker images or Virtual Machines
(VMs) for their development environments, you still need to ensure that they have been built with
the latest Python environment, and that all development environments are up to date.

When developing on one OS but deploying on a different OS, you may be missing OS-level
dependencies.

DevOps is often left to resolve multiple conflicting code check-ins, leading to CI/CD environments
that differ from development environments

Centrally managing and deploying your Python environments means that development and DevOps teams
remain in sync, eliminating “works on my machine” issues.

Automatically building your Python environment for Windows and Linux.

Providing a central “source of truth” for the Python runtime environment that all developers (and
DevOps) can pull to build their local environments, ensuring everyone is using the same
environment, no matter their OS.

Updates to the environment are made centrally, and can be updated locally with a single
command.

Page 8

Restricted: developers are provided access to a walled garden in the form of a hosted repository
that features only those Python packages that have been approved for use.

Choosing the Right Packages

While not traditionally considered a package management issue, one of the most common problems we
hear from customers is, “How can I ensure my developers are using only the approved set of
components/component versions?”

Currently, most enterprises either:

The ActiveState Platform offers two approaches, depending on the enterprise’s needs:

Use a local “walled garden” repository of packages, which can severely limit developers that want
to experiment with new packages and/or new versions since they are simply not available.
Typically, the approval process for adding new components to the walled garden can be quite
lengthy and/or complex.

Manually maintain a list of approved packages/versions, which can quickly get out of date.

Use a third-party tool, which can help restrict use of packages that feature unapproved licenses
and/or those that have a vulnerability. However, developers can still gain access to unapproved
packages that meet these criteria.

Unrestricted: developers gain access to all packages in our catalog (which is updated from PyPI,
GitHub, and other sources on a regular basis), but are provided guidance as to which
packages/versions are appropriate for use through our indemnification offering. Indemnified
packages are well maintained and feature licenses appropriate for creating commercial offerings.

Page 9

Finding and Fixing Vulnerabilities

Again, although fixing package vulnerabilities are not typically considered a key requirement of package
management, securing Python environments is a common use case that currently requires an inordinate
amount of time and resources to:

While there are a number of solutions that can notify developers when a vulnerability is discovered, and
even suggest a solution, all the other steps remain manual tasks. It's no wonder that the Mean Time To
Remediation (MTTR) for these kinds of issues is weeks instead of days or hours.

The ActiveState Platform helps automate a number of the time consuming tasks associated with finding
and fixing vulnerabilities, including:

Discover the Common Vulnerabilities and Exposures (CVEs)

Investigate the impact

Patch/upgrade/downgrade the affected package

Rebuild the environment

Retest

Automated status updates

A list of non-vulnerable package versions that you can simply point and click to upgrade or down-
grade to

Visibly showing the cascading effect on all other dependencies when you upgrade/downgrade a
package

Automatically rebuilding and testing the environment for you

As a result, developers can spend less time finding and fixing vulnerabilities, and enterprises can
dramatically decrease MTTR.

Page 10

How ActiveState Can Help
The ActiveState Platform takes a holistic approach to package management, providing developers with a
single, unified, cloud-based toolchain that works for both Python and Perl on Windows and Linux.

By adopting the ActiveState Platform, enterprise developers can benefit from many of the same advan-
tages, including:

Those that prefer to work from the command line can leverage the ActiveState Platform’s CLI, the State
Tool, which acts as a universal package manager for Python, and provides access to most of the features
offered by the Platform.

Automated building of packages from source, including link C libraries without the need for a local
build environment.

Automated resolution of dependencies (or suggestions on how to manually resolve conflicts),
ensuring that your environment always contains a set of known good dependencies that work
together.

Central management of a single source of truth for your environment that can be deployed with a
single command to all development and CI/CD environments, ensuring consistent reproducibility.

Automated installation of virtual Python environments on Windows or Linux without requiring prior
setup.

The ability to find, fix and automatically rebuild vulnerable environments, thereby enhancing
security and dramatically reducing time and effort involved in resolving CVEs.

Visually seeing which versions of which packages are approved for use, thereby taking the
guesswork out of development.

Conclusions
ActiveState provides a unified cross-platform toolchain for modern Python package management. It can
replace the complex and hard-to-maintain in-house solutions built from multiple package managers,
environment management tools and other solutions. By adopting the ActiveState Platform, developers
can:

Ultimately, developers that are willing to adopt the ActiveState Platform will spend less time wrestling with
tooling and more time focused on doing what they do best: coding.

To try the ActiveState Platform for yourself, sign up for a free account at https://platform.activestate.com

Increase the security of Python environments

Improve the transparency of your open source supply chain

Dramatically reduce package and environment management overhead

Eliminate dependency hell

Reduce “works on my machine” issues

