
OPTIMIZING CI/CD
IMPLEMENTATIONS
Executive Summary

High volume CI/CD is a high pressure/high stakes process that can lead to
DevOps burnout. Three of the key issues that can throw a monkey wrench into any
CI/CD pipeline are:

Reproducibility
Ensuring that all
systems are consistent
throughout the CI/CD
chain, as well as
development and
production.

Eliminate the “works on my machine” issue by
providing a consistent, reproducible runtime
environment that can be deployed to all systems
with a single command.

Solve open source supply chain issues by delivering
transparency for all language artifacts in production
workloads.

Speed up CI/CD runs by using a pre-built runtime
environment.

Speed
“A hallmark of modern
CI is spending 10
minutes to build a
Docker image to run a
process for 5s.1”

Transparency
Understanding the
original source for all
artifacts throughout the
chain improves both
security and compliance
of production
workloads.

This paper proposes
the ActiveState
Platform as a solution
to help DevOps:

The result is a more secure and compliant CI/CD pipeline that eliminates the
complexity and overhead imposed by many CI/CD systems when using custom
runtimes. All of which means a reduction in pipeline maintenance time, which can
enable more deliveries of code with greater confidence.

1 https://twitter.com/indygreg/status/1231008674090344449 Page 1

THE STATE OF CI/CD
Continuous Integration/Continuous Deployment (CI/CD) is a best practice
that allows for better synchronization between development teams, who typically
check in code frequently, and operations teams, who typically deploy code
much less frequently in order to maximize application stability. CI/CD
enables standard, consistent, automated testing and deployment so teams
can deliver updates to production with confidence more frequently.

However, for most organizations, a fully automated CI/CD implementation
remains aspirational. ActiveState recently undertook a survey involving
organizations of every size that have deployed a CI/CD solution. Our findings show
that less than 40% of the more than one thousand respondents surveyed have
implemented a majority of CI/CD best practices to date.

Figure 1: What best describes your team’s CI/CD practice?

Fully mature

Core implementation

Partial Implementation

Proof of concept

Aspirational

18%

21.5%

33.1%

18%

9.3%
0 5 10 15 20 25 30 35

Page 2

https://www.activestate.com/resources/datasheets/ci-cd-survey-results/

One of the key reasons holding organizations back from fully implementing CI/CD is
the significant difference between continuous deployment and continuous delivery.
While all organizations can benefit from continuous delivery to non-production
systems, most organizations are reluctant to automatically deploy to production
every code change that successfully passes the CI/CD pipeline. Frequent application
updates can be disruptive to users, and put pressure on documentation,
marketing and operations teams, in addition to DevOps. In fact, at least one survey
has shown that modern teams who implement automated production deployment
can be highly stressed:

 ² https://dzone.com/articles/devops-teams-are-stressed-and-dissatisfied-with-th

Not at all A little Moderate A lot A great deal

Traditional Teams %

Transitioning Teams

Modern Teams

Figure 2: Team stress levels 2

ActiveState’s own survey also showed that only a minority of respondents (~10%) are
extremely satisfied with their current CI/CD deployment. This level of dissatisfaction
undoubtedly contributes to the stress teams are feeling.

Page 3

https://www.activestate.com/resources/datasheets/ci-cd-survey-results/
https://www.mabl.com/devtestops/survey-results

The reason for this level of stress and dissatisfaction may be attributable to a
number of common but critical challenges our respondents are experiencing with
their language runtime environments, including:

A runtime environment consists of a version of a language, as well as all the
packages/dependencies required to run the application. Inconsistencies can occur
when developers check in code that was developed on systems with differing
development environments (the dreaded “works on my machine” error), as well as
when the runtime environment of a CI/CD system differs from development or even
production environments.

Runtime inconsistencies was the #1 reported challenge by our survey respondents,
despite the fact that the majority of them use Docker or a similar container solution
in their processes. Containers are designed to be ephemeral, built for a specific
purpose and discarded when that purpose has been served. But if the container is not
built in a consistent manner, with the exact same manifest every time, discrepancies
can arise. Common runtime environment inconsistencies can crop up both within
and between development systems and CI/CD systems for a number of reasons,
including:

CI/CD CHALLENGES

Runtime Inconsistencies & Dependency Management

Figure 3: What are your top 3 challenges with managing language dependencies and runtimes?

Security
Runtime inconsistencies

Lack of reproducibility
Developer onboarding

Dependency management
Cross platform issues

Compliance with policies and regulations
Approvals for 3rd-Party code

14.4%
19.5%
13.6%

4.7%
14.8%

7%
11.7%
14.4%

0 5 10 15 20

Page 4

Some (but not all) developers including the latest version
of a package to work around a bug or vulnerability

Unpinned dependencies pulling in the latest version of a
package, rather than the required one

Differing OS-level dependencies

Poorly named vendored dependencies (ie., dependencies
you’ve modified or created) conflicting with similarly
named public packages

And so on

The ActiveState Survey also highlights a number of drawbacks with CI/CD
systems, including:

Figure 4: Which major drawbacks of CI/CD has your organization experienced?

Supporting multiple operating systems is difficult
Supporting a new language is difficult

Our CI/CD tooling is slow
Increased overhead maintaining tool chain

Increased developer stress
Hard to keep local dev and CI/CD environments in sync

Hard to get reproducible results
Hard to find developers experienced with CI/CD

Brittle, complex toolchain

8.2%
8.2%
9.8%

11.8%
11%

13.7%
11%

14.9%
11.5%

0 3 6 9 12 15

Page 5

Similar to the issue of inconsistencies, the #2
drawback our survey respondents noted was
the difficulty in keeping local development
and CI/CD systems in sync. Over time, these
systems tend to diverge, again, despite the
widespread use of containers.

One of the key reasons for this is that
developers rarely rebuild/reinstall their
development environment from scratch if
they need to update a single package or
OS-level dependency. Over time, this can
result in significant differences both within
and between developer and CI/CD systems.

Unfortunately, developers rarely think about
how easy it might be to reproduce an
environment in order to test their code. As a
result, when something fails during CI,
developers may be forced to spend time
reproducing the CI environment where the
defect was detected. But building that
environment can often take longer than
fixing the defect.

Again, the ActiveState Platform can help.
When a project’s runtime environment is
automatically updated and built on the
ActiveState Platform, it can then be
propagated to every system with a single
command. In this way, developer and CI/CD
systems can always be kept in sync, and
developers can spend their time fixing
defects rather than building environments.

Finally, the #3 drawback with
CI/CD cited by our survey
respondents was increased
overhead due to maintaining
multiple toolchains, one for each
OS and/or language.

Most modern development teams
work with their OS of choice,
which means that organizations
must support Linux, Windows and
Mac systems. Further, while they
may develop on the latest version
of Ubuntu, they may deploy on a
previous version of Redhat
Enterprise Linux (RHEL). Such a
scenario would entail creating
and updating a build environment
for four different target OSes.
With four different toolchains for a
single project, teams are
spending more time on tool
maintenance and less time
coding. And if your tech stack
includes more than one language,
maintenance overhead increases
dramatically.

Page 6

Synchronizing Dev & CI/CD Systems

Toolchain Maintenance &
Multi-OS/Multi-Language
Support

Page 7

The ActiveState Platform can help here, as well. It provides a single, cloud-based
toolchain for all popular OSes (Linux, Windows and Mac), as well as support for both
Python and Perl, and soon Ruby. As a result, you no longer need to maintain your own
build environments, and can leverage a single, universal package management
solution (ActiveState’s State Tool) to empower all your teams.

HOW ACTIVESTATE CAN HELP
OPTIMIZE CI/CD
There are a number of challenges with CI/CD systems that prevent organizations
from fully adopting, implementing and deriving greater value from them. While the
ActiveState Platform is not a silver bullet for solving all CI/CD challenges, it can help
you optimize your existing implementation.

The ActiveState Platform can be integrated with all of the most popular CI/CD
platforms quickly and easily. In this model, your preferred Version Control System
(VCS) acts as the source of truth for your project’s code, and the ActiveState Platform
acts as the source of truth for the runtime environment, which includes a language
and all the packages your project requires. Your CI/CD solution will grab the runtime
from the ActiveState Platform and the source code from your VCS, and then build
and run its tests. This process is valid for both on premise solutions, like Jenkins, as
well as cloud-based solutions like GitHub Actions, Google Cloud Build, Azure
Pipelines, etc.

https://www.activestate.com/products/platform/

Incorporating the
ActiveState Platform
into your CI/CD
processes offers a
number of advantages,
including:

Reproducibility - eliminate “works on my
machine” issues and simplify the
troubleshooting of bugs. ActiveState’s single,
central source of truth for your runtime ensures
development environments and CI/CD
environments are always in sync.

Speed - pre-built runtime environments decrease
the time to build containers. Of course, caching
can help cut down on runtime creation times for
repeated runs, but not when you’re doing rapid
development and changing your dependencies.

Simplicity - using non-standard runtimes with
cloud-based CI/CD solutions can be complex.
But by prebuilding your custom runtime
environment on the ActiveState Platform, you
can simply pull it into your cloud-based CI/CD
chain.

And finally, because the ActiveState Platform builds all the components in a runtime
environment from source code, you can improve both the security and compliance
of your production workloads.

Page 8

CONCLUSIONS
Just as a code repository can simplify the creation of complex software, a runtime
management solution like the ActiveState Platform can simplify and streamline
CI/CD by acting as the single source of truth for the pre-built runtime environment
used by all the systems across development and the CI/CD chain.

The ActiveState Platform provides a single, cloud-based toolchain that developers
can use on-demand to automatically build a custom Python, Perl or Tcl runtime
environment from source for Windows, Mac or Linux systems. The ActiveState
Platform catalog includes tens of thousands of Python, Perl and Tcl packages pulled
from their respective open source repositories (as well as other definitive sources)
on a regular basis to ensure you can build your runtimes with the latest versions of
your dependencies.

By using the
ActiveState Platform
organizations can:

Build language runtimes from source quickly and
easily, thereby deriving the benefits of open source
provenance without having to maintain their own
build infrastructure.

Reproduce development environments with a single
command, thereby streamlining onboarding of new
developers, simplifying maintenance of older
projects, and eliminating “works on my machine”
issues.

Simplify and speed up CI/CD runs by using a prebuilt
runtime environment.

Page 9

For more information, please visit

www.activestate.com/ci-cd-resources

https://www.activestate.com/ci-cd-resources/

