
EXPERT TIPS AND TRICKS FOR
INTEGRATING LARGE-SCALE
DATABASES WITH PERL AND PYTHON
AN ACTIVESTATE BEST PRACTICES WHITEPAPER

2

EXPERT TIPS AND TRICKS

INTRODUCTION

Organizations depend on large-scale databases to
manage large data sets and need well-tested, well-
supported solutions to manage and massage their data.

Enterprises are deploying databases in cluster
environments that appear to the end users as a single
unified computing resource when in actuality they are
a set of independent computer systems and network
interconnecting them. To pull this ruse off, enterprises rely
on dynamic languages such as Perl and Python to glue
together these networks and ensure reliable and secure
connections to their data stores.

This whitepaper covers details on integrating Perl and
Python with commercial relational database management
systems (RDBMS) including specifics on tools and re-
sources to utilize. Part I covers Perl, Part II covers Python.

PART I: HOW TO INTEGRATE LARGE-
SCALE DATABASES WITH PERL

It’s all too tempting today to always look to the latest
technologies as a way to solve problems, without looking
at tried-and-true methods that have been working for
years. There’s nothing wrong with adopting new tools, of
course, but there’s a tendency to throw the technological
baby out with the bathwater because of the perception
that new equals better. Sometimes it does, but when
working with mission-critical systems and data, it’s quite
likely that the mature solutions are going to do better by
you.

What we have learned is that Perl is one of the best ways
to tackle integration of large-scale databases. Perl, while
no longer the hot new thing, is mature and still thriving.

Perl 5 has a long history of successfully working with
open-source and commercial RDBMSs such as MySQL,
PostgreSQL, Oracle, Microsoft SQL Server, and many
others.

Use the right tools
A common mistake is for developers to reinvent the wheel
when working with databases. Don’t! Use the standard
DBI driver modules that come with Perl to connect to
your database. They’ve been tested hard, probably by
companies with even larger data sets and more traffic to
and from the database.

Perl’s DBD::* modules provide a standard database
interface that defines methods, variables and conventions
that is consistent. This means that working with databases
is not only well-documented and tested, it also gives great
flexibility down the road. You might build your application
on MySQL for testing but deploy on PostgreSQL or
Oracle. You might need to migrate away from SQL Server
at some point. Perl’s DBI module lets you avoid lock-in on
the application side.

Another tip for using the right tools is to use package
managers—rather than the Comprehensive Perl Archive
Network (CPAN) module—to manage your Perl modules.
There are package managers such as ActiveState’s Perl
Package Manager (PPM) available that offer a good way
to manage binary modules without having to build from
CPAN for updates.

Never trust the client
The customer is always right, but client data input should
always be assumed to be wrong. Data can be malformed
accidentally or maliciously. But either way, it has the
potential to cause problems.

3

EXPERT TIPS AND TRICKS

Perl provides some excellent tools to sanitize external
input data. Make sure that you’re stripping “special”
characters from input, avoid stored HTML and be careful
where you’re storing user-supplied data. Use of Perl’s
“taint” mode will also ensure data generated outside your
program as tainted so it cannot accidentally be used as a
file name or subprocess command.

“Don’t trust data supplied by the browser” should be the
foremost rule of thumb.

Your data is yours
You should be very conservative about data that’s
accepted as input, and even more conservative about
data that is sent out. Make use of security features
that are available in connecting to your database. Most
databases can work with SSL or have other features
to ensure that communication between an application
server and a database server are encrypted. It’s also a
good idea to store data in an encrypted state should an
attacker actually get so far as gaining access to your data
store.

Legacy systems or applications may be constructed
in such a way that a native encrypted connector is not
possible. That’s suboptimal, but not impossible to fix. Use
a Secure Shell (SSH) tunnel between systems when SSL is
not natively supported by the database connector.

Ensure that session data is encrypted. Any session
exchanging personal data between your application
and the user over a network should be encrypted, but
also look to encrypting session state information when
storing session data in a URL. The Crypt::* modules will
provide the proper tools to do this and also look to the
CGI::EncryptForm module.

Performance improvements
The first thing some programmers do is commit
premature optimization. That is, worrying about
getting the tightest code but failing to optimize the way
the database is used. Many times, the performance
bottleneck is the database—so figure out how to optimize
its performance before worrying whether you’ve got the
very best algorithms.

Naturally, you’re going to have a beefy database server
but put it to good use. Don’t hit the database server
unless it’s absolutely necessary. Cache results so that
you’re not making multiple (and unnecessary) calls for
data you’ve already fetched once.

But you need to get the data, so how can you avoid it?
There are a couple of ways: You can use an intermediate
local data store to cache data between the main RDBMS
and your application, such as memcached or Berkeley
DB. Another tip is to avoid sprinkling unnecessary SQL
queries throughout your code. Use object-relational
mapping (ORM) to convert data between incompatible
type systems. Perl’s DBIx::Class module can speak with all
kinds of traditional RDBMSs to handle just about any type
of work you’re doing.

SUMMARY

No matter what RDBMS you’re using, it goes well with
Perl. These guidelines are a good starting point to ensure
that your application running on a large-scale database is
going to be successful. Take the advice in this whitepaper
and you’ll be well on the way to a successful deployment
or revision.

4

EXPERT TIPS AND TRICKS

PART II: HOW TO INTEGRATE LARGE-
SCALE DATABASES WITH PYTHON

Python coupled with a commercial-grade enterprise
RDBMS is often your best solution in cost, stability, and
usability for lowering risks and ensuring enterprise levels
of support for your community of users.

Python is a portable, platform-independent, general-
purpose language that can perform the same tasks as the
database-centric, proprietary fourth-generation language
(4GL) tools supplied by database vendors. Like 4GL tools,
Python lets you write programs that access, display and
update information in a database with minimal effort.
Unlike many 4GLs, Python also gives you a variety of
other capabilities, such as parsing HTML, making socket
connections and encrypting data.

Python Knows Large-Scale Databases
Your average enterprise databases (e.g. Sybase, IBM DB2,
Oracle, or more) are all supported in varying degrees
by a vibrant Python developer community with a good
series of packages to ease integration issues. Importantly,
most of these modules are well supported in turn by the
enterprise database vendors. Support from both sides,
community and vendor, is the key to happiness. A symbi-
otic, two-way relationship between Python communities
and database vendors is a best practice.

Apply Plenty of Python Glue
The Python DB API was defined to encourage
standardization between Python modules in their
approach to how they access databases. The Python
community has done an excellent job developing and
applying this standardized way to approach relational
databases and SQL databases. This level of API
standardization is a sign of the maturity of the community
and bodes well for enterprise looking to leverage Python.

For more information see:
http://www.python.org/dev/peps/pep-0249/

Many enterprises have already plunged in and begun
using Python as their “glue” and have a head start in
integrating Python with their enterprise databases due in
large part to development of the following Python pack-
ages:

SQLAlchemy
When it comes to enterprise databases, SQLAlchemy is
your friend. It is the Python Object Relational Mapper
that gives application developers the style and flexibility
of Object-Oriented Programming without compromising
the power of raw SQL database access. In other words,
SQLAlchemy helps to overcome the Object-Relational
“impedance mismatch” the same way Java Data Objects
(JDO) does. There’s a large community of developers
supporting it. SQLAlchemy provides a full suite of well-
known enterprise-level persistence patterns, designed for
efficient and high-performing database access, adapted
into a simple and Pythonic domain language. It is utilized
by many enterprises.

For more information see:
http://www.sqlalchemy.org/

cx_Oracle
cx_Oracle is the Python interface to Oracle. It is a good
example of a module that is community-led project but
has great support from Oracle as well.

For more information see:
http://pypi.python.org/pypi/cx_Oracle/5.0.4

Python-sybase
Python-sybase is the Sybase module for Python. It is
not as well loved as other enterprise data stores when it
comes to community support even though Sybase itself
continues to be quite a popular choice in the financial

5

EXPERT TIPS AND TRICKS

sector. The Python modules supporting it are not as well
cared for and maintained as others.

For more information see:
http://python-sybase.sourceforge.net/download.html

PyDB2
Well supported by and loved by both the community and
the vendor. For more information see:
https://github.com/ibmdb/python-ibmdb

Open Source Data Store Options

We would be remiss not to mention the two open source
options that are now being widely adopted by enterprises:
MySQL and PostgreSQL. Their Python data connectors:
mysql-python and psycopg2 have seen rigorous stress
testing both with enterprise deployments and on cloud
infrastructure offerings such as Amazon’s EC2 platform.

Oh, But You’ve Got Big Data!
NoSQL is hot. The compelling feature of NoSQL data sets
is the volume. Think social media. Companies like Hadoop,
MongoDB, and Cassandra are providing the foundation
for massive repositories of data like Facebook, eBay and
others.

But NoSQL is important for large enterprises as well.
Under the hood of SAP and ERP systems, what you’re
dealing with are transactions. Business transactions. The
volume of data in those systems might be very high, but
they don’t approach the volume of data needed to try to
keep track of everything anyone on Twitter says about
you. So, the projects that people are having to manage
now are changing their nature, which is why the NoSQL
large databases are really starting to be required within
the enterprise.

Good news, the Python community has gotten fully
behind supporting big data.

The House that Guido Built
Python’s been integrated with enterprise class databases
for many years. With newer, technologies like NoSQL
it’s maybe a little bit more mixed. There are examples
already where Python’s doing very interesting things on
a very large scale, as exemplified by Google’s embrace
and adoption of Python as one of the key components of
Google App Engine’s stack. A lot of the interest in Python
and development is being driven by Google, and is being
donated back into the Open Source community – all
of which has lead to a more robust, mature and stable
Python. Guido van Rossum, the Dutch programmer
best known as the author of Python, is now a Google
employee.

For example, MapReduce is the patented software
framework that Google brought into being to support
distributed computing on large data sets on clusters of
computers. It is basically is a NoSQL approach. Python
developers already have access to Python module called
mincemeat.py that is a Python implementation of the
MapReduce distributed computing framework.

For more information see:
https://github.com/michaelfairley/mincemeatpy

Get Your Messaging Queue Here!
Messaging queuing is important functionality for
enterprises where performance and speed are essential,
especially in financial services. Companies that need to
initiate stock trades quickly and do algorithmic training.
They want to have the fastest message queuing possible
to make trades instantly. There are two excellent Python
wrappers are available – RabbitMQ & the newcomer
zeromq.

6

EXPERT TIPS AND TRICKS

RabbitMQ
RabbitMQ is a complete and highly reliable enterprise
messaging system based on the emerging AMQP
standard. To use RabbitMQ with Python you need
amqplib.

For more information on RabbitMQ see:
https://www.rabbitmq.com/

zeromq
Python is available for zeromq. For more information see:
http://www.zeromq.org/

The Global Interpreter Lock (GIL) Issue
There is a perceived issue with Python arising from the
Global Interpreter Lock (GIL). GIL has a global lock and
only one process at a time can access memory. It can
make things difficult when working with databases when
you’re making a lot of connections. With a large number
of concurrent connections open, suddenly, GIL becomes
the bottleneck.

But in many environments this is no issue at all. In fact, it
is a distinct advantage. If you have a huge, full database
against which you make long-running queries, you will not
care about GIL.

The reason why GIL exists is that it provides an extremely
high level of security in the concurrency sense. You’re
prevented from shooting yourself in the foot.

You Need Testing and Support Now!
It’s common to set up test environments on MySQL and
Python. Then you’ll deploy on Oracle or other bigger
enterprise class databases. In other words, Python is the
language that you prototype in.

The key point when making a decision about what
database you’re going to use is what support do you
have available. For the mission critical systems at large
enterprises, large databases have good, strong vendor
support. You can count on them.

You can also count on paying a lot.

If you want enterprise support for your Python database
connector modules, come to ActiveState. We can provide
the same reliable support that you’d expect from a large
database vendor at a much lower cost.

For more information see:
http://www.activestate.com/support/commercial

Don’t Fight It, Open Source Will Be Smuggled In Anyway

There’s another reason you might consider ActiveState
support and training. Open source comes in as a grass-
roots movement. It starts with one engineer testing out
features. When she realizes the advances, she suggests it
to her team. This way open source solutions integrate into
teams and organizations. This is a common pattern.

Stop Looking Dumb To Engineers
PyPI Index enables you to search for build information
and availability of Python packages or modules in the
Python community’s build repositories. For Perl, there’s
the CPAN and ActiveState’s PPM.

The difference with PyPM Index from all the other Python
index pages is the build information. Other indexes just
provide a way to find the source code so you can build
it yourself. But the PyPM Index provides builds but also
great information on cross-platform issues.

7

EXPERT TIPS AND TRICKS

SUMMARY

Python has you covered. From well-known and trusted
relational databases used by enterprises around
the world to fancy cutting-edge NoSQL ventures to
high demand messaging queuing… whatever your
environment, you can utilize Python to your advantage.

ON-DEMAND DYNAMIC
LANGUAGE EXPERTISE

ActiveState’s top Perl and Python experts have decades
of experience developing, troubleshooting and deploying
applications with dynamic languages. Our experts will
advise you on ways to improve development efficiencies,
minimize downtime, improve time-to-market, to get the
best return on your Perl or Python investment.

Our Perl and Python experts will work with your team to
provide:

 › Best practices advice on module usage to save
developer time

 › Expert how-to guidance on database connectivity
 › Customized builds of Perl or Python with the

modules you need, on the operating systems you
rely on

 › Troubleshooting of code problems or leaks, including
code audits, to ensure maximum application
performance

Talk to our team of dynamic language experts and you’ll
see why Fortune 1000 companies, like Cisco, CA, Juniper
Networks, Credit Suisse, Bank of America, The Boeing
Company and NASA, trust ActiveState expertise.

www.activestate.com/support/commercial

ABOUT ACTIVESTATE
ActiveState believes that enterprises gain a competitive advantage when they are able to quickly create, deploy and efficiently manage software solutions that immediately create business value, but
they face many challenges that prevent them from doing so. The company is uniquely positioned to help address these challenges through our experience with enterprises, people and technology.
ActiveState is proven for the enterprise: more than two million developers and 97 percent of Fortune 1000 companies use ActiveState’s end-to-end solutions to develop, distribute, and manage
their software applications written in Java, Perl, Python, Node.js, PHP, Tcl and other dynamic languages. Global customers like Cisco, CA, HP, Bank of America, Siemens and Lockheed Martin trust
ActiveState to save time, save money, minimize risk, ensure compliance and reduce time to market.

© 2017 ActiveState Software Inc. All rights reserved. ActiveState, ActivePerl, ActiveState Komodo, ActivePerl Pro Studio, and Perl Dev Kit are registered trademarks of ActiveState. All other marks are
property of their respective owners

ActiveState Software Inc.
sales@activestate.com

Phone: +1.778.786.1100
Fax: +1.778.786.1133

Toll-free in North America:
1.866.631.4581

